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Abstract—The aim of this study is the synthesis of pseudopeptides on solid supports, in order to quickly obtain modified peptides.
We report a convenient step-by-step synthesis of ketomethylenimino w[CO–CH@N] and ketomethylenamino w[CO–CH2–NH] pep-
tides. The key is the reaction between the free amino terminus of the supported peptide and a glyoxal-modified amino acid, leading
to a ketomethylenimino bond, which can be reduced to a ketomethylenamino bond.
� 2004 Elsevier Ltd. All rights reserved.
Several diseases involve a protease imbalance and it is of
great importance to find new protease inhibitors.
Human Leucocyte Elastase (HLE) is a serine protease
that hydrolyzes a wide variety of proteins, including
collagen and elastin. One of its natural inhibitors is
a1-proteinase inhibitor (a1-PI) and its imbalance with
HLE may induce various chronic inflammatory diseases
such as acute respiratory distress syndrome (ARDS) or
pulmonary emphysema.1,2 This explains the increasing
need of efficient inhibitors, resistant to hydrolysis caused
by the enzyme. A possible class of enzyme inhibitors is
the pseudopeptides. They can be very interesting tools
for scientific and mechanistic investigation and have
been widely used for this purpose for a long time. Our
group has extensively studied, on model pseudopeptides,
the structural influence of different amide bond surro-
gates3 and of the nitrogen substitution for the CaH
group.4 These peptide surrogates present the advantage
of allowing structural modulation of the peptide back-
bone with retention of the side chains generally required
for biological activity. Furthermore, it is possible to
obtain (i) a control of the structural flexibility, (ii) an
increased selectivity for the binding site, (iii) increased
resistance to hydrolysis, and (iv) improved permeability
through various biological barriers.
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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The replacement of a natural peptide bond with a
ketomethylenamino bond w[CO–CH2–NH] is of great
interest due to its increased flexibility, and therefore a
potentially better adaptability to the binding site of an
enzyme, and to a putative better resistance to hydrolysis.
The ketomethylenamino link has been introduced by
Meyer et al.5 for the design of ACE inhibitors. It has
later been used as such or in various N-alkylated or
reduced forms to give ACE,6 furin,7 and HIV8 protease
inhibitors.

Herein, we present the incorporation of ketomethyleni-
mino and ketomethylenamino moieties in a hexapeptide,
derived from the target sequence of a1-PI, H-Ala1-Ala2-
Pro3-Val4-Ala5-Ala6-OH.7 HLE cleaves this peptide at
the Val4-Ala5 position.9 Therefore, we developed a con-
cise and general method for the direct incorporation of
ketomethylenimino and ketomethylenamino moieties
into Wang-resin-supported peptides.

Until now8,10 ketomethylenamino peptides have been
synthesized in homogeneous phase via the incorporation
of the modified peptide building blocks that require
laborious purification steps with concomitant racemiza-
tion at the stereogenic center. One method (Pathway A,
Scheme 1) involves the formation of a chloromethyl-
ketone.8 A second method uses the formation of the gly-
oxal of an N-protected amino acid obtained via the
oxidation of its corresponding diazo derivative by di-
methyldioxirane (DMD) (Pathway B, Scheme 1). The
imino bond formed is reduced by SiCl3H.10
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Scheme 1. General synthesis of a ketomethylenamino dipeptide.

Table 1. Yields for the preparation of the modified amino acids

Fmoc-amino acid Diazo (%) Glyoxal (%)

Fmoc-Ala-OH 92 >99

Fmoc-Pro-OH 93 >99

Fmoc-Val-OH 98 >99
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These two methods are aimed at the preparation of N-Z-
protected pseudodipeptides, which are incompatible
with direct solid phase synthesis (SPPS). These
approaches entail: (i) the preparation and purification
of the Z-pseudodipeptide ester; (ii) the substitution of
the Z group for a Boc or an Fmoc group; (iii) the sapon-
ification of the C-terminus ester, and (iv) the coupling of
the building block on the growing chain. To minimize
the number of the steps, we developed a direct method
in only one step via SPPS. An Fmoc aminoglyoxal is
coupled to the free N-terminus of a peptide linked to
the resin to form the ketomethylenimino bond, which
can be reduced, in situ, to the ketomethylenamino bond.
The ketomethylenimino link has been introduced at the
Val4-Ala5 position and the ketomethylenamino at the
Ala2-Pro3, Pro3-Val4, and Val4-Ala5 positions.

Initially, we synthesized the Fmoc aminoglyoxals Fmoc-
Ala-CHO, Fmoc-Pro-CHO, and Fmoc-Val-CHO by the
Groarke10 method with 90% overall yields (Scheme 2).

The methylene group of the pseudopeptidic link w[CO–
CH2–NH] was then included via homologization on the
C-terminus part by action of diazomethane12 on the
mixed anhydride of the N-Fmoc protected original ami-
no acid. The diazo compounds were synthesized in good
to excellent yields (Table 1). Purification was achieved
via silica gel column flash chromatography. The diazo
compounds were oxidized into the corresponding gly-
oxal immediately prior to use. The oxidizing agent
DMD is prepared via the action of Oxone� on acetone
in the presence of NaHCO3.

13 The DMD solution quan-
titatively oxidizes the diazo compound in 10min at 0 �C.
After removal of the solvent, the glyoxal must be used
without further purification, due to its low stability.

These Fmoc aminoglyoxals are then directly reacted
with the growing peptide linked to the Wang-resin, lead-
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Scheme 2. Synthesis of Fmoc-a-aminoglyoxals.11
ing first to the ketomethylenimino link. This short step
synthesis of ketomethylenimino derivatives is advanta-
geous in view of the fragility of this class of compounds.
To form the ketomethylenamino bond, a few drops of
acetic acid are added prior to 3equiv of NaBH3CN,
added portionwise for 1h, in order to reduce the imino
bond. After stirring overnight, a Kaiser test clearly indi-
cates the complete coupling. The following peptide cou-
plings, as well as the final cleavage of the pseudopeptide
from the resin, are achieved according to the methods
known in the literature (Scheme 3).14 The overall yield
of the final crude pseudopeptides ranges from 59% to
90%. They were characterized by nuclear magnetic reso-
nance (13C, 1H, COSY, TOCSY NMR) and mass spectr-
oscopy. COSY and TOCSY NMR experiments
confirmed the inclusion of either the ketomethylenimino
link (dH = 7.99 for CO–CH@N) or the ketomethyl-
enamino link (dH = 3.68 for CO–CH2–NH). Purity of
hexapseudopeptides tested is >99% after HPLC.

In conclusion, we propose an efficient method for the
synthesis of ketomethylenimino w[CO–CH@N] and
ketomethylenamino w[CO–CH2–NH] peptides on a
solid support. This method uses N-protected amino-
glyoxals as reagents, readily obtained by a diazota-
tion–oxidation pathway. In this way, we avoid the
purification, transprotection, and nonfree racemization
saponification steps needed for the pseudodipeptide
building-block method previously described. The hexa-
pseudopeptide H-Ala-Ala-Pro-Valw[CO–CH2–NH]-
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Scheme 3. Solid phase synthesis of the ketomethylenimino and ketomethylenamino peptides (example given for the Val4-Ala5 position).
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Ala-Ala-OH exhibits inhibition toward HLE (IC50:
1.90 · 10�4M) and is currently being studied by NMR
in order to determine its structure when bound to its
receptor.
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